MATHEMATICS SOLUTION (CBCGS SEM - 4 MAY 2019) BRANCH - IT ENGINEERING

1a) Find the remainder when 2^{50} is divided by 7.
Ans. We know, $2^{3}=8=7 \times 1+1$
$\therefore 2^{3}=8 \equiv 1(\bmod 7)$
$\therefore\left(2^{3}\right)^{16} \equiv 1^{16}(\bmod 7)$
$\therefore 2^{48} \equiv 1(\bmod 7)$
$\therefore 2^{48} \times 2^{2} \equiv 1 \times 2^{2}(\bmod 7)$
$\therefore 2^{50} \equiv 4(\bmod 7)$
Hence, the remainder when 2^{50} is divided by 7 is 4.

1b) The probability distribution function of random variable X is
(05)

X	0	1	2	3	4	5	6
$\mathbf{P}(\mathrm{x}=x)$	k	3 k	5 k	7 k	9 k	11 k	13 k

Find (i)k; (ii)p(x $\leq 4)$; (iii)p($x \leq 4$); (iv)p(3<x<6); (v)p(3<x $\leq 6)$.
Ans. For any probability mass function, $\sum_{i=-\infty}^{\infty} p_{i}=1$
$\therefore p(0)+p(1)+p(2)+p(3)+p(4)+p(5)+p(6)=1$
$\therefore \mathrm{k}+3 \mathrm{k}+5 \mathrm{k}+7 \mathrm{k}+9 \mathrm{k}+11 \mathrm{k}+13 \mathrm{k}=1$
$\therefore 49 \mathrm{k}=1$
$\therefore \mathrm{k}=\frac{1}{49}$

ENGINEERING
The p.m.f is

X	0	1	2	3	4	5	6
$P(x)$	$\frac{1}{49}$	$\frac{3}{49}$	$\frac{5}{49}$	$\frac{7}{49}$	$\frac{9}{49}$	$\frac{11}{49}$	$\frac{13}{49}$

$\therefore \mathrm{p}(\mathrm{x}<4)=\mathrm{p}(0)+\mathrm{p}(1)+\mathrm{p}(2)+\mathrm{p}(3)$

$$
\begin{aligned}
& =\frac{1}{49}+\frac{3}{49}+\frac{5}{49}+\frac{7}{49} \\
& =\frac{16}{49}
\end{aligned}
$$

$\therefore \mathrm{p}(\mathrm{x} \leq 4)=\mathrm{p}(0)+\mathrm{p}(1)+\mathrm{p}(2)+\mathrm{p}(3)+\mathrm{p}(4)$

$$
\begin{aligned}
& =\frac{1}{49}+\frac{3}{49}+\frac{5}{49}+\frac{7}{49}+\frac{9}{49} \\
& =\frac{25}{49}
\end{aligned}
$$

$$
\therefore \mathrm{p}(3<\mathrm{x}<6)=\mathrm{p}(4)+\mathrm{p}(5)
$$

$$
=\frac{9}{49}+\frac{11}{49}
$$

$$
=\frac{20}{49}
$$

$$
\begin{aligned}
P(3<x \leq 6) & =p(4)+p(5)+p(6) \\
& =\frac{9}{49}+\frac{11}{49}+\frac{13}{49} \\
& =\frac{33}{49}
\end{aligned}
$$

Hence,

$$
K=\frac{1}{49} ; p(x<4)=\frac{16}{49} ; p(x \leq 4)=\frac{25}{49} ; p(3<x<6)=\frac{20}{49} ; p(3<x \leq 6)=\frac{33}{49}
$$

1c) Calculate the value rank correlation coefficient from the following data regarding score of 6 students in physics \& chemistry test.

Marks in physics: 40,42,45, 35, 36, 39
Marks in chemistry: 46, 43, 44, 39, 40, 43

Ans. Let X and Y denote Marks in statistics and Accountancy respectively.

\mathbf{X}	\mathbf{Y}	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{d}_{\mathbf{1}}=\mathbf{R}_{\mathbf{1}}-\mathbf{R}_{\mathbf{2}}$	$\mathbf{d}_{\mathbf{1}}{ }^{\mathbf{2}}$
40	46	3	1	2	4
42	43	2	3.5	-1.5	2.25
45	44	1	2	-1	1.00
35	39	6	6	0	0
36	40	5	5	0	0
39	43	4	3.5	0.5	0.25
				Total $=$	7.5

Here $\mathrm{n}=6, \mathrm{~m}_{1}=2$
\therefore spearmen's Rank correlation Coefficient is $\mathrm{R}=1-\frac{6}{n\left(n^{2}-1\right)}\left\{\Sigma \mathrm{d}_{1}{ }^{2}+\frac{1}{12}\left(\mathrm{~m}_{1}{ }^{3}-\mathrm{m}_{1}\right)\right\}$

$$
\begin{aligned}
& =1-\frac{6}{6\left(6^{2}-1\right)}\left\{7.5+\frac{1}{12}\left(2^{3}-2\right)\right\} \\
& =1-\frac{1}{35}\left\{7.5+\frac{1}{12} \times 6\right\} \\
& =0.7714
\end{aligned}
$$

The value of rank correlation coefficient $=0.7714$

1d) Draw the Hasse diagram of poset $A=\{2,3,6,12,24,36,72\}$ under the relation of divisibility. Is it Lattice?

Ans. $A=\{2,3,6,12,24,36,72\}$, Under the relation of divisibility, the Hasse Diagram is

OUR CENTERS :
KALYAN | DOMBIVLI | THANE | NERUL | DADAR
Contact - 9136008228

We know the relation of divisibility is a partial order relation.
\therefore Set (A, R) is a poset.
Consider,

\wedge	2	3	6	12	24	36	72
2	2	-	2	2	2	2	2
3	-	3	3	3	3	3	3
6	2	3	6	6	6	6	6
12	2	3	6	12	12	12	12
24	2	3	6	12	24	12	24
36	2	3	6	12	12	36	36
72	2	3	6	12	24	36	72

We, observe, from the above table, that some pair of elements of A do not have a GLB (greatest lower bound) $\in A$. Hence (A, R) is not a lattice.

2a) If x is a Poisson variate such that $P(x=2)=9 P(x=4)+90 P(x=6)$ then

find mean of x.

Ans. For Poisson distribution, $P(X=x)=\frac{e^{-m} m^{x}}{x!}$
Given, $P(x=2)=9 P(x=4)+90 P(X=6)$
$\therefore \frac{e^{-m} m^{2}}{2!}=\frac{9 e^{-m} m^{4}}{4!}+\frac{90 e^{-m} m^{6}}{6!}$
$\therefore \frac{e^{-m} m^{2}}{2}=\frac{3 e^{-m} m^{4}}{8}+\frac{e^{-m} m^{6}}{8}$
$\therefore \frac{e^{-m} m^{2}}{2}=\frac{e^{-m} m^{2}}{8}\left(3 m^{2}+m^{4}\right)$
$\therefore 4=3 \mathrm{~m}^{2}+\mathrm{m}^{4}$
$\therefore \mathrm{m}^{4}+3 \mathrm{~m}^{2}-4=0$
$\therefore \mathrm{m}^{2}=-4$ or $\mathrm{m}^{2}=1$
$\therefore \mathrm{m}= \pm 2 i$ or $\mathrm{m}= \pm 1$
Assuming m is real and positive, $\mathrm{m}=1$
Hence, for the given Poisson distribution,
\therefore Mean $=\mathrm{m}=1$ and Variance $=\mathrm{m}=1$

2b) Consider $(3,4)$ parity check code. For each of the following received words determine whether an error will be detected? (i) 0010;(ii) 1001; (iii) 1101; (iv) 1111.

Ans. Let H be a $(3,4)$ parity check code

$$
\text { Let } H=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right]
$$

We define syndrome of ' r ' as $s=r H^{\top}$, Where ' r ' is the received word.
If the syndrome ' s ' is not all zeros, then an error has been detected. If it is All zeros, then that the codeword can be assume as correct.

We use binary addition for matrix operation

$$
\begin{array}{ccc}
+ & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}
$$

(i) Received code $(r)=(0010)$
$\therefore s=r H^{\top}=\left[\begin{array}{llll}0 & 0 & 1 & 0\end{array}\right] \times\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$
As the syndrome ' s ' is not all zeros, the error can be detected.
(ii) Received Code (r) - (1001)
$\therefore \mathrm{s}=\mathrm{rH}^{\top}=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right] \times\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$
As the syndrome ' s ' is not all zeros, the error can be detected.
(iii) Received Code (r) = (1101)
$\therefore s=r H^{\top}=\left[\begin{array}{llll}1 & 1 & 0 & 1\end{array}\right] \times\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$

OUR CENTERS :
KALYAN | DOMBIVLI | THANE | NERUL | DADAR
Contact - 9136008228

As the syndrome ' s ' is all zeros, the error cannot be detected.
(iv) Received Code (r) - (1111)
$\because s=r H^{\top}=\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right] \times\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$
As the syndrome ' S ' is not all zeros, the error can be detected.

2c) Using sieve of Eratosthenes, find the prime number upto 150.
Ans. Sieve of Eratosthenes

First, we write all numbers from 1 to 150
We consider all multiples of prime numbers less than $\sqrt{150}=12.24 \approx 12$ i.e. $2,3,5,7,11$ and cancel them to get the prime number up to 150 .
(13)

Hence, prime number upto 150 are
$2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101$, 103,107, 109, 113, 127, 131, 137, 139, 149.

2d) What is the remainder when following sum is divided by $4 ? 1^{5}+2^{5}+3^{5}+\ldots+100^{5}$.
(04)

Ans. $1^{5}+2^{5}+3^{5}+4^{5}(\bmod 4)=5^{5}+6^{5}+7^{5}+8^{5}(\bmod 4)=9^{5}+10^{5}+11^{5}+12^{5}(\bmod 4)=$ so on i.e we will get 25 such sets.
So if we find what $1^{5}+2^{5}+3^{5}+4^{5}(\bmod 4)$ is, we can simply multiply it by 25 to get the final result. $1^{5}(\bmod 4)=1$
$2^{5}(\bmod 4)=0$
$3^{5}(\bmod 4)=3$
$4^{5}(\bmod 4)=0$
So $1^{5}+2^{5}+3^{5}+4^{5}(\bmod 4)=(1+0+3+0)(\bmod 4)$
$=4(\bmod 4)$
$=0$ (remainder)
Hence final answer is $0 \times 25=0$

3a) Prove that a graph ' G ' remains connected after removing an edge ' e ' from ' G ' iff ' e ' is in some circuit of G .
(06)

Ans._A circuit is a walk that starts and ends at a same vertex and Contains no repeated edges. Edge ' e ' is a part of a circuit of G. Let ' a ' and ' b ' be the endpoints of edge e.

\therefore vertices ' a ' and ' b ' are the part of circuit G.
\therefore There exist two paths from ' a ' to ' b '. one of this path includes the edge ' e '.
On removal of edge ' e ', there exists a path from a to b that does not includes the edge ' e '. Hence, graph 'G' remains connected.

3b) Marks obtained by students in an examination follow normal distributions.
If 30% of students got below 35 marks and got above 60 marks. Find mean and standard deviation.
Ans. Let the mean and standard derivation be ' m ' and ' σ '.
Let X denote marks obtained by a student in an examination.

ENGINEERING

Part I:

Let SNV corresponding to $x_{1}=35$ be z_{1}
$\mathrm{P}(\mathrm{x}<35)=30 \%$

$\therefore \mathrm{P}\left(\mathrm{z}<\mathrm{z}_{1}\right)=0.30$
$\therefore 0.5$ - Area between ' $\mathrm{z}=0$ ' to ${ }^{\prime} \mathrm{z}=-\mathrm{z}$ ', is 0.30
\therefore Area between ' $\mathrm{z}=0$ ' to ' $\mathrm{z}=-\mathrm{z}$ ', is 0.20
From z-table, $-\mathrm{z}_{1}=0.5244$ i.e, $\mathrm{z}_{1}=-0.5244$
But, $\mathrm{z}_{1}=\frac{x_{1-m}}{\sigma}$

$$
\begin{aligned}
& \therefore-0.5244=\frac{35-m}{\sigma} \\
& \therefore \mathrm{~m}-0.5244 \sigma=35 \rightarrow(1)
\end{aligned}
$$

Part II:

Let SNV corresponding to $x_{2}=60$ be z_{2}.
$\mathrm{P}(x>60)=10 \%$
$\therefore \mathrm{p}\left(\mathrm{z}>\mathrm{z}_{2}\right)=0.10$
$\therefore 0.5$ - Area between ' $\mathrm{z}=0$ ' to ' $\mathrm{z}=\mathrm{z}_{2}$ ' is 0.10
\therefore Area between ' $\mathrm{z}=0$ ' to ' $\mathrm{z}=\mathrm{z}_{2}$ ' is 0.40
From z-table, $\mathrm{z}_{2}=1.2816$
But, $\mathrm{z}_{2}=\frac{x_{2-m}}{\sigma}$
OUR CENTERS :

$$
\begin{aligned}
& \therefore 1.2816=\frac{60-m}{\sigma} \\
& \therefore \mathrm{~m}+1.2816 \sigma=60 \rightarrow(2)
\end{aligned}
$$

Solving (1) \& (2) simultaneously we get, $\mathrm{m}=42.2593$ and $\sigma=13.8431$
Hence,
Mean Marks $=\mathrm{m} \approx 42$
Standard Deviation $=\sigma=13.8431$
Variance $=\sigma^{2}=13.8431^{2}=191.6314$

3c) Investigate the association between the darkness of eye colour in father and son from the following data:
(08)

	Colour of Father's eyes			
Colour of son's eyes		Dark	Not Dark	Total
	Dark	48	90	138
	Not Dark	80	782	862
	Total	128	872	1000

Ans.

Observed Frequency (0)	Expected Frequency (E)	$x^{2}=\frac{(o-E)^{2}}{E}$
48	18	50,0000
90	120	7.5000
80	110	8.1818
782	752	1.1968
	Total	66.8786

Step I:

Null Hypothesis $\left(\mathrm{H}_{0}\right)$: There is no association between the darkness of eye colour in father and son.
Alternative Hypothesis $\left(\mathrm{H}_{\mathrm{a}}\right)$: There is association between the darkness of eye colour in father \& son. (Two tailed test).

OUR CENTERS :
KALYAN | DOMBIVLI | THANE | NERUL | DADAR
Contact - 9136008228

Step 2:

LOS $=5 \%$ (Two tailed test)
Degree of Fredom $=(r-1)(c-1)$

$$
\begin{aligned}
& =(2-1)(2-1) \\
& =1
\end{aligned}
$$

\therefore Critical value $\left(x_{a}{ }^{2}\right)=3.841$
Step 3: Test Statistic
$x_{\text {cal }}{ }^{2}=\sum \frac{(O-E)^{2}}{E}=66.8786$
Step 5: Decision
Since $x_{\text {cal }}{ }^{2}>x_{a}{ }^{2}, \mathrm{H}_{0}$ is rejected.
\therefore There is association between the darkness of eye colour in father and son.

4a) Using Euclid's Algorithm find x and y satisfying the following :
$\operatorname{gcd}(-306,657)=306 x+657 y$.
Ans. Property of GCD : $(\mathrm{a}, \mathrm{b})=(-\mathrm{a}, \mathrm{b})(\mathrm{a},-\mathrm{b})=(-\mathrm{a},-\mathrm{b})=(|a||b|)$
$\therefore \operatorname{gcd}(-306,657)=\operatorname{gcd}(306,657)$
Part I: Let $\mathrm{a}=306$ and $\mathrm{b}=657$, Using Euclid Algorithm,

1	$657=2 \times 306+45$	$\therefore \mathrm{b}=2 \times \mathrm{a}+45$ $\therefore \mathrm{~b}-2 \mathrm{a}=45$
2	$306=6 \times 45+36$	$\therefore \mathrm{a}=6 \times(\mathrm{b}-2 \mathrm{a})+36$ $\therefore \mathrm{a}=6 \mathrm{~b}-12 \mathrm{a}+36$ $\therefore 13 \mathrm{a}-6 \mathrm{~b}=36$
3	$45=1 \times 36+9$	$\therefore \mathrm{b}-2 \mathrm{a}=1 \mathrm{x}(13 \mathrm{a}-6 \mathrm{~b})+9$ $\therefore \mathrm{~b}-2 \mathrm{a}=13 \mathrm{a}-6 \mathrm{~b}+9$ $\therefore 7 \mathrm{~b}-15 \mathrm{a}=9 \rightarrow(1)$
4	$36=1 \times 9+0$	

$\because \operatorname{gcd}(-306,657)=\operatorname{gcd}(306,657)=9$
OUR CENTERS :
KALYAN | DOMBIVLI | THANE | NERUL | DADAR
Contact - 9136008228

Part II :

Given, $306 x+657 y=\operatorname{gcd}(-306,637)$
$\therefore \mathrm{ax}+\mathrm{by}=9 \rightarrow(2)$
Comparing (1) and (2), $x=-15$ and $y=7$
i.e., $x_{0}=-15$ and $y_{0}=7$ is one solution of $306 x+657 y=\operatorname{gcd}(-306,637)$
other solutions are $x=x_{0}+\left[\frac{b}{d}\right] \mathrm{t}$ and $\mathrm{y}=y_{0}-\left[\frac{a}{d}\right] \mathrm{t}$ where ' t ' is arbitrary $\& \mathrm{~d}=\operatorname{gcd}$ of a $\& \mathrm{~b}$ i.e. $d=(a, b)=9$
$\therefore x=-15+\left(\frac{657}{9}\right) \mathrm{t}$ and $\mathrm{y}=7-\left(\frac{306}{9}\right) \mathrm{t}$
\therefore other solutions are $x=-15+73 t$ and $y=7-34 t$

4b) Let $\mathrm{L}=\{1,2,3,5,6,10,15,30\}$ with divisibility relation. Then show that L is a complimented lattice.

Ans. Given $L=\{1,2,3,5,6,10,15,30\}$, which is a set of Division of 30 .
$\therefore \mathrm{D}_{30}=\mathrm{L}=\{1,2,3,5,6,10,15,30\}$
R is the relation 'is divisible by'

$$
\mathrm{R}=\{(1,1),(1,2),(1,3),(1,5),(1,6),(1,10),(1,15),(1,30),(2,2),(2,6),(2,10)
$$

$(2,30),(3,3),(3,6),(3,15),(3,30),(5,5),(5,10),(5,25),(5,30),(6,6),(6,30),(10,10)$, $(10,30),(15,15),(15,30),(30,30)\}$

The Hasse diagram is

OUR CENTERS :
KALYAN | DOMBIVLI | THANE | NERUL | DADAR
Contact - 9136008228

We know the relation of divisibility is a partial order relation. $\therefore \operatorname{set}\left(D_{30}, R\right)$ is a poset.

Consider,

v	1	2	3	5	6	10	15	30
1	1	2	3	5	6	10	15	30
2	2	2	6	10	6	10	30	30
3	3	6	3	15	6	30	15	30
5	5	10	15	5	30	10	15	30
6	6	6	6	30	6	30	30	30
10	10	10	30	10	30	10	30	30
15	15	30	15	15	30	30	15	30
30	30	30	30	30	30	30	30	30

\vee	1	2	3	5	6	10	15	30
1	1	1	1	1	1	1	1	1
2	1	2	1	1	2	2	1	2
3	1	1	3	1	3	1	3	3
5	1	1	1	5	1	5	5	5
6	1	2	3	1	6	2	3	6
10	1	2	1	5	2	10	5	10
15	1	1	3	5	3	5	15	15
30	1	2	3	5	6	10	15	30

From the two table we observe that every pair of elements of D_{30} has a LUB (least upper bound) and GLB (greatest lower bound). Also, each LUB and GLB $\in \mathrm{D}_{30}$

Hence, $\left(\mathrm{D}_{30}, \mathrm{R}\right)$ is a lattice.
By definition of a complement, a $\vee \bar{a}=1$ and a $\wedge \bar{a}=0$ i.e, a $\vee \bar{a}=30$ and a $\wedge \bar{a}=1$
From the above two tables we observe, the complements of elements of set A are

Elements	1	2	3	5	6	10	15	30
Complements	30	15	10	6	5	3	2	1

\therefore complement of each elements exists. \therefore L is a complimented Lattice.

4c) Give an example of a graph which has

(i) Eulerian circuit but not a Hamiltonian circuit
(ii) Hamiltonian circuit but not an Eulerian circuit
(iii) Both Hamiltonian circuit and Eulerian circuit.
(iv) None of Hamiltonian circuit and Eulcerian circuit.

Ans:
(i) Eulerian circuit but not a Hamiltonian circuit

OUR CENTERS :
KALYAN | DOMBIVLI | THANE | NERUL | DADAR
Contact - 9136008228

All the vertices are of even degree. Hence by theorem there is Eulerian circuit.
Eulerian circuit : abcdeca
The circuit is not Hamiltonian because there is no circuit which contains all the vertices only once.
(ii) Hamiltonian circuit but not an Eulerian circuit

All the vertices can be traversed only once. Hence there is Hamiltonian circuit. Hamiltonian circuit: abcdea
The degree of vertices b \& d are odd. Hence there is no Eulerian circuit.
(iii) Both Hamiltonian circuit and Eulerian circuit.

Degree of all vertices are even. Hence there is an Euler circuit abdea.
All the vertices can be traversed only once. Hence there is Hamiltonian circuit. Hamiltonian circuit : abdea
(iv) None of Hamiltonian circuit and Eulcerian circuit.

The circuit is not Hamiltonian because there is no circuit which contains all the vertices only once.
The degree of vertices b \& g are odd. Hence there is no Eulerian circuit.

OUR CENTERS :
KALYAN | DOMBIVLI | THANE | NERUL | DADAR
Contact - 9136008228

5a) Fit Binomial Distribution to the following data.

\mathbf{x}	0	1	2	3	4
Frequency	12	66	109	59	10

Ans.

X	f	$f x$	Theoretical frequency
0	12	0	$17.42 \approx 17$
1	66	66	$66.75 \approx 67$
2	109	218	$95.91 \approx 96$
3	59	177	$61.25 \approx 61$
4	10	40	$14.67 \approx 15$
Total	256	501	256

$$
\text { Mean }=\frac{\Sigma f_{i X_{i}}}{\Sigma f_{i}}=\frac{501}{256}=1.9570
$$

But, for binomial distribution, mean $=\mathrm{np}$

$$
\begin{aligned}
& \therefore 1.9570=4 \mathrm{p} \\
& \therefore \mathrm{p}=0.4893 \\
& \therefore \mathrm{q}=1-\mathrm{p}=1-0.4893=0.5107 \\
& \mathrm{n}=4 \text { and } \mathrm{N}=256
\end{aligned}
$$

$\therefore \mathrm{P}(\mathrm{X}=x)={ }^{n} C_{x} p^{x} q^{n-x}={ }^{4} C_{x} \times(0.4893) \times(0.5107)^{4-x}$
\therefore Theoretical frequency $=\mathrm{N} \times \mathrm{p}(\mathrm{X}=\mathrm{x})$

$$
=256 \times{ }^{4} C_{x} \times(0.4893)^{\times} \times(0.5107)^{4-x}
$$

$5 b)$ Nine items of a sample had the following values:45, 47, 50, 52, 48, 47, 49, 53, 51. Does the mean of 9 items differ significantly from the assumed population means 47.5 ?

Ans. $\mathrm{n}=9(<30$, so it is small sample)

Step1:

Null Hypothesis $\left(\mathrm{H}_{0}\right): \mu=47.5$ (i.e, sample mean does not differ significantly from the assumed population mean 47.5)

OUR CENTERS :
KALYAN | DOMBIVLI | THANE | NERUL | DADAR

Alternative Hypothesis $\left(\mathrm{H}_{0}\right): \mu \neq 47.5$ (i.e, sample mean differ significally from the assumed population mean 47.5) (two tailed test)

Step 2:

LOS $=5 \%$ (Two tailed test)
Degree of Freedom $=n-1=9-1=8$
\therefore Critical value $\left(\mathrm{t}_{\mathrm{a}}\right)=2.306$

Step 3:

Values $\left(x_{1}\right)$	$\mathrm{d}_{\mathrm{i}}=x_{i}-47$	$\mathrm{~d}_{\mathrm{i}}{ }^{2}$
45	-2	4
47	0	0
50	3	9
52	5	25
48	1	1
47	0	0
49	2	4
53	6	36
51	4	16
Total	19	95

$\bar{d}=\frac{\Sigma d_{1}}{n}=\frac{19}{9}=2.1111$
$\therefore \bar{x}=a+\bar{d}=47+2.11=49.11$
Since sample is small, $\delta=\sqrt{\frac{\Sigma d_{i}{ }^{2}}{n}-\left[\frac{\Sigma d_{i}}{n}\right]^{2}}$

$$
=\sqrt{\frac{95}{9}-\left(\frac{19}{9}\right)^{2}}
$$

$$
=2.4696
$$

Standard Error S.E $=\frac{s}{\sqrt{n-1}}$

$$
\begin{aligned}
& =\frac{2.4696}{\sqrt{8}} \\
& =0.8731
\end{aligned}
$$

Step 4: Test Statistic
$t_{c a l}=\frac{\bar{x}-\mu}{S . E .}$

$$
\begin{gathered}
=\frac{49.1111-47.5}{0.8731} \\
=1.8452
\end{gathered}
$$

Step 5: Decision
Since $\left|t_{\text {cal }}\right|<t_{a}, H_{0}$ is accepted.
\therefore sample mean does not differ significantly from the assumed population mean 47.5.

5c) Solve: $x=1(\bmod 3), x=2(\bmod 5), x=3(\bmod 7)$
Ans:

$$
\begin{aligned}
& a_{1}=1 \quad m_{1}=3 \\
& a_{2}=2 \quad m_{2}=5 \\
& a_{3}=3 \quad m_{3}=7 \\
& M=m_{1} \cdot m_{2} . m_{3} \\
& M=3 \times 5 \times 7=105 \\
& M_{1}=5 \times 7=35 \\
& M_{2}=3 \times 7=21 \\
& M_{3}=3 \times 5=15 \\
& M_{1} x \equiv 1\left(\bmod m_{1}\right) \quad M_{2} x \equiv 1\left(\bmod m_{2}\right) \quad M_{3} x \equiv 1\left(\bmod m_{3}\right) \\
& 35 x \equiv 1(\bmod 3) \\
& 1 \equiv 35 x(\bmod 3) \\
& 21 x \equiv 1(\bmod 5) \\
& 1 \equiv 21 x(\bmod 5) \quad 1 \equiv 15 x(\bmod 7) \\
& 1 \equiv 2 x(\bmod 3) \\
& 1 \equiv-x(\bmod 3) \\
& x \equiv-1(\bmod 3) \\
& x \equiv 2(\bmod 3) \\
& 15 x \equiv 1(\bmod 7) \\
& 1 \equiv 1 x(\bmod 7) \\
& x \equiv 1(\bmod 7)
\end{aligned}
$$

By Chinese Remainder Theorem,

$$
\begin{aligned}
& \therefore \quad x \equiv\left[a_{1} M_{1} x_{1}+a_{2} M_{2} x_{2}+a_{3} M_{3} x_{3}\right] \text { modulo } M . \\
& x \equiv[(1)(35)(2)+(2)(21)(1)+(3)(15)(1)] \text { modulo } 105 \\
& x \equiv 157(\bmod 105) \\
& x \equiv 52(\bmod 105)
\end{aligned}
$$

$\therefore x=52$ is one solution. General solution is given by, $x=52+105 k$ where k is any integer

6a) Given $6 \mathrm{y}=5 \mathrm{x}+90,5 \mathrm{x}=8 \mathrm{y}+30, \sigma_{x}{ }^{2}=16$. Find (i) \bar{x} and \bar{y} (ii) r (iii) $\sigma_{y}{ }^{2}$
Ans. $6 y=5 x+90$

$$
\begin{aligned}
& \therefore y=\frac{5}{6} x+\frac{90}{6} \\
& \therefore y=\frac{5}{6} x+15 \rightarrow(1)
\end{aligned}
$$

And, $5 \mathrm{x}=8 \mathrm{y}+30$
$\therefore 8 y=5 x-30$

$$
\therefore y=\frac{5}{8} x-\frac{30}{8} \rightarrow(2)
$$

Let $\mathrm{b}_{1}=\frac{5}{6}$ and $\mathrm{b}_{2}=\frac{5}{8}$
Since $\left|b_{2}\right|<\left|b_{1}\right|$,
$b_{y x}=\mathrm{b}_{2}=\frac{5}{8} \& b_{x y}=\frac{1}{b_{1}}=\frac{6}{5} \rightarrow(3)$
\therefore Equation (2) is regression equation of y on x type.
And equation (1) is regression equation of X on Y type.
From (1) and (2), $\frac{5}{6} x+15=\frac{5}{8} x-\frac{30}{8}$

$$
\therefore \frac{30}{8}+15=\frac{5}{8} x-\frac{5}{6} x
$$

$$
\begin{aligned}
& \therefore \frac{75}{4}=\frac{-5}{24} x \\
& \therefore x=-90
\end{aligned}
$$

Substitute $x=-90$ in (1)

$$
\therefore \mathrm{y}=\frac{5}{6}(-90)+15=-60
$$

Now, $\quad \mathrm{r}= \pm \sqrt{b_{y x} \cdot b_{x y}}$

$$
\begin{aligned}
& = \pm \sqrt{\frac{5}{8} \times \frac{6}{5}}(\text { from } 3) \\
& = \pm 0.8660
\end{aligned}
$$

Since, $b_{y x}$ and $b_{x y}$ are both positive. ' r ' is positive.

$$
\therefore \mathrm{r}=0.8660 \rightarrow(4)
$$

Also, given, $\sigma_{\mathrm{x}}{ }^{2}=16$

$$
\begin{equation*}
\therefore \sigma_{\mathrm{x}}=4 \rightarrow \tag{5}
\end{equation*}
$$

Using, $b_{y x}=\mathrm{r} \frac{\sigma_{y}}{\sigma_{x}}$

$$
\begin{aligned}
& \therefore \frac{5}{8}=0.8660 * \frac{\sigma_{y}}{4} \\
& \therefore \sigma_{y}=2.8868 \\
& \therefore \sigma_{y}^{2}=8.3333
\end{aligned}
$$

Ans. 1) $\bar{x}=-90 ; \bar{y}=-60$;
2) $r=0.8660 ;$
3) $\sigma_{\mathrm{y}}{ }^{2}=8.3333$.

6b) Prove that set of cube root of unity is a group under multiplication of complex number.
Ans. Let ' ω ' be cube root of unity.
$\therefore \omega=\sqrt[3]{1}$

ENGINEERING
$\therefore \omega^{3}=1 \rightarrow(1)$
$\therefore \omega^{3}-1=0$
On solving we get, the root as
$\omega_{1}=1 ; \quad \omega_{2}=\frac{-1}{2}+i \frac{\sqrt{3}}{2} ; \quad \omega_{3}=\frac{-1}{2}-i \frac{\sqrt{3}}{2}$
Consider, $\omega_{2}{ }^{2}=\left(\frac{-1}{2}+i \frac{\sqrt{3}}{2}\right)^{2}=\frac{-1}{2}-i \frac{\sqrt{3}}{2}$
$\therefore \omega_{3}=\omega_{2}{ }^{2} \rightarrow(2)$
Similarly, $\omega_{2}=\omega_{3}{ }^{2} \rightarrow(3)$
Also, $\omega_{2} \times \omega_{3}=\left(\frac{-1}{2}+i \frac{\sqrt{3}}{2}\right) \times\left(\frac{-1}{2}+i \frac{\sqrt{3}}{2}\right)=1 \rightarrow(4)$
Let $G=\left\{1, \omega_{2}, \omega_{2}{ }^{2}\right\}$ be the set of set of cube- roots of unity.
The composition table under multiplication of complex number is (using $1,2,3, \& 4$)

x	1		
1	1	ω_{2}	$\omega_{3}=\omega_{2}{ }^{2}$
ω_{2}	ω_{2}	$\omega_{2}{ }^{2}=\omega_{3}$	ω_{3}
$\omega_{3}=\omega_{2}{ }^{2}$	ω_{3}	1	1

From above table, we observe, All the elements belongs to G.
$\therefore \mathrm{x}$ is binary operator in G .

G1:

Multiplication of complex number is associative.
$\therefore \mathrm{x}$ is associative.
G2:
From table, we observe, first row is same as the header.
$\therefore 1 \in \mathrm{G}$ is the identity.
\therefore Identify of x exist.
OUR CENTERS :
KALYAN | DOMBIVLI | THANE | NERUL | DADAR
Contact - 9136008228

G3:

From table, we observe, identify elements (i.e.1) is present in each row.
$\therefore 1^{-1}=1 ;\left(\omega_{2}\right)^{-1}=\omega_{3} ;\left(\omega_{3}\right)^{-1}=\omega_{2}$
\therefore Inverse of each element exist and each inverse $\in G$
\therefore Inverse of x exist.
Hence, set of cube root of unity is a group under multiplication of complex numbers.
6 c) Show that $111^{333}+333^{111}$ is divisible by 7 .
Ans.
We know, $111=16 \times 7+(-1)$
$\therefore 111 \equiv-1(\bmod 7)$
$\therefore 111^{333} \equiv(-1)^{333}(\bmod 7)$
$\therefore 111^{333} \equiv-1(\bmod 7) \longrightarrow(1)$
Similarly, $333=47 \times 7+(4)$
$\therefore 333 \equiv 4(\bmod 7)$
$\therefore 333^{3} \equiv 4^{3}(\bmod 7)$
$333^{3} \equiv 64(\bmod 7)$
$333^{3} \equiv 1(\bmod 7)$
$\left(333^{3}\right)^{37} \equiv 1^{37}(\bmod 7)$
$(333)^{111} \equiv 1(\bmod 7) \rightarrow(2)$
\therefore Adding $(1) \&(2), 111^{333}+3333^{111} \equiv 1(\bmod 7)+(-1)(\bmod 7)$
$\therefore 111^{333}+333^{111} \equiv(1-1)(\bmod 7)$
$\therefore 111^{333}+333^{111} \equiv 0(\bmod 7)$
i.e, Remainder $=0$ when $111^{333}+333^{111}$ is divided by 7 .
$\therefore 111^{222}+333^{111}$ is divisible by 7 .
OUR CENTERS :

ENGINEERING

6d) Find $5^{-1}(\bmod 23)$.
Ans. 23 is a prime number
By Fermat's little theorem, $\mathrm{a}^{-1}(\bmod \mathrm{p}) \equiv a^{P-2}(\bmod \mathrm{p})$
$\mathrm{a}=5, \mathrm{p}=23$
$5^{-1}(\bmod 23) \equiv 5^{23-2}(\bmod 23)$

$$
\begin{aligned}
& \equiv 5^{21}(\bmod 23) \\
& \equiv\left(5^{7}\right)^{3}(\bmod 23) \\
& \equiv 17^{3}(\bmod 23) \\
& \equiv 14(\bmod 23)
\end{aligned}
$$

